

Divide & Concur and Difference-Map Belief Propagation

Jonathan Yedidia

Yige Wang Stark Draper

Outline

- Review of factor graphs for optimization and inference, and the min-sum Belief Propagation (BP) algorithm
- Gravel and Elser's "Divide & Concur" algorithm interpreted as a message-passing algorithm
- Decoders for Low-Density Parity Check (LDPC) Codes
 - Divide & Concur Decoder
 - "Difference-Map Belief Propagation" (DMBP) Decoder
- Simulation Results
 - DMBP Decoder significantly improves error-floor performance compared with standard BP decoders, with similar complexity!

Probabilistic Inference and Optimization Problems

- **Channel Coding**: Data is corrupted by a noisy channel. What is the most probable version of the original data?
- Computer Vision: A camera captures an ambiguous scene.
 What is the most probable interpretation of the scene?
- **Physics**: An atomic-scale energy function is given for a molecule or crystal. What is the most probable configuration?
- Optimization: We are given a problem with constraints and costs. What is the lowest cost configuration consistent with the constraints?
- Equivalence of probabilistic inference and optimization problems:

$$probability(X) \propto e^{-cost(X)}$$

Representing Costs (or Probabilities) in a Factor Graph

ullet We assume that the overall cost is the sum of M local costs

$$Cost = \sum_{a=1}^{M} C_a(X_a)$$

 We represent local cost functions with squares (called "factor nodes"), connected to the circles representing variable nodes involved in the local cost function.

hidden variable

observed variable

Example

$$Cost = C_a(x_1, x_2, x_3) + C_b(x_2, x_4) + C_c(x_3, x_4)$$

x_1	x_2	x_3	C_a
0	0	0	∞
0	0	1	0
0	1	0	0
0	1	1	∞
1	0	0	0
1	0	1	∞
1	1	0	∞
1	1	1	0

\mathcal{I}_b
.2
.7
5.2
.9
.6
.4

x_3	x_4	C_c
0	0	0.4
0	1	1.9
0	2	0.2
1	0	4.9
1	1	0.3
1	2	2.4

Infinite cost configurations are *forbidden* in "hard" constraints.

Error-correcting Codes

(Tanner, 1981)

Observed Symbols

Unknown Transmitted Bits

Parity Checks

Goal: find most probable code-word

- 1. Initialize messages from variable nodes to factor nodes.
- 2. Update messages from factors to variables.
- 3. Update beliefs.
- 4. Threshold beliefs, and check for termination.
- 5. Update messages from variables to factors, and go to step 2.

- 1. Initialize messages from variable nodes to factor nodes.
- 2. Update messages from factors to variables.
- 3. Update beliefs.
- 4. Threshold beliefs, and check for termination.
- 5. Update messages from variables to factors, and go to step 2.

- 1. Initialize messages from variables to factor nodes.
- 2. Update messages from factors to variables.
- 3. Update beliefs.
- 4. Threshold beliefs, and check for termination.
- 5. Update messages from variables to factors, and go to step 2.

- 1. Initialize messages from variable nodes to factor nodes.
- 2. Update messages from factors to variables.
- 3. Update beliefs.
- 4. Threshold beliefs, and check for termination.
- 5. Update messages from variables to factors, and go to step 2.

- 1. Initialize messages from variable nodes to factor nodes.
- 2. Update messages from factors to variables.
- 3. Update beliefs.
- 4. Threshold beliefs, and check for termination.
- 5. Update messages from variables to factors, and go to step 2.

Belief Propagation Belief Update Rules

$$b_i(x_i) = \sum_{a \in N(i)} m_{a \to i}(x_i)$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$
"belief" "messages"

A variable node tells nearby factor nodes what it thinks its costs will be for being in different states.

A variable node tells nearby factor nodes what it thinks its costs will be for being in different states.

$$m_{a \to i}(x_i) = \min_{x_j, x_k} \left[C_a(x_i, x_j, x_k) + m_{j \to a}(x_j) + m_{k \to a}(x_k) \right]$$

$$m_{a \to i}(x_i) = \min_{X_a \setminus x_i} \left[C_a(X_a) + \sum_{j \in N(a) \setminus i} m_{j \to a}(x_j) \right]$$

"Min-Sum Rule"

$$m_{a \to i}(x_i) = \min_{x_j, x_k} \left[C_a(x_i, x_j, x_k) + m_{j \to a}(x_j) + m_{k \to a}(x_k) \right]$$

Outline

- Review of factor graphs for optimization and inference, and the min-sum Belief Propagation (BP) algorithm
- Gravel and Elser's "Divide & Concur" algorithm interpreted as a message-passing algorithm
- Decoders for Low-Density Parity Check (LDPC) Codes
 - Divide & Concur Decoder
 - "Difference-Map Belief Propagation" (DMBP) Decoder
- Simulation Results
 - DMBP Decoder significantly improves error-floor performance compared with standard BP decoders, with similar complexity!

Divide & Concur

- Introduced by Simon Gravel and Veit Elser from Cornell, who generalized an approach used by X-ray crystallographers.
- In contrast with BP, works well with continuous-valued variables.
- Also works well when there is no local evidence for the variables, just constraints between the variables.
- Note: Gravel and Elser did not describe D&C as a message-passing algorithm, but it can be formulated in that way.

Sphere-packing Problem Shows Advantages Compared with Belief Propagation

Improved packings, from Gravel's Ph.D. thesis (2009)

Continuous variables, and no local evidence

Divide & Concur Ideas

- Use only "hard" constraints on the variables. I.e., all costs at factor nodes are zero or infinity. (Problems with soft constraints can still be handled by introducing explicit "cost" variables.)
- Each variable has a "replica" for each constraint it is involved in.
- We search for a set of replica values that satisfy all the constraints ("Divide projection"), and such that all replicas for the same variable have the same value ("Concur projection").
- The Divide projection moves the replica values to the nearest values that satisfy the constraint. The Concur projection averages the replica values belonging to the same variable.
- Use Elser's "Difference-Map" dynamics to avoid local traps that occur when one naively alternately iterates between Divide and Concur projections.

D&C Projections: Divide Projection

D&C Projections: Concur Projection

D&C Projections

Traps in Naive Alternating Projection Approach

$$\mathbf{r}_{t+1} = P_C(P_D(\mathbf{r}_t))$$

Difference-Map Dynamics

$\mathbf{r}_{t+1} = P_C \left(\mathbf{r}_t +$	$-2[P_D(\mathbf{r}_t)-\mathbf{r}_t]$	$])-[P_D(\mathbf{r}_t)-\mathbf{r}_t]$
--	--------------------------------------	---------------------------------------

t	$oldsymbol{r}_t$	$P_D(\mathbf{r}_t)$	$ extbf{\emph{r}}_t^{over}$	$ extbf{\emph{r}}_t^{conc}$
1	(2, 2)	(3,1)	(4,0)	(2, 2)
2	(1, 3)	(3,1)	(5,-1)	(2,2)
3	(0, 4)	(0,0)	(0, -4)	(-2, -2)
4	(-2,2)	(0,0)	(2, -2)	(0,0)
5	(-2,2)			

Difference-Map Dynamics:

- Overshoot
- Concur
- Correct

Divide & Concur As Message-Passing

 "Overshoot" replica values are messages from constraints to variables.

$$\mathbf{m}_{a\rightarrow}(t) = \mathbf{m}_{\rightarrow a}(t) + 2[P_D^a(\mathbf{m}_{\rightarrow a}(t)) - \mathbf{m}_{\rightarrow a}(t)]$$

· "Concurred" replica values are beliefs.

$$b_i(t) = P_C^i(\mathbf{m}_{\to i}(t)) = \frac{1}{|\mathcal{M}(i)|} \sum_{a \in \mathcal{M}(i)} m_{a \to i}(t)$$

• "Corrected" replica values are messages from variables to checks.

$$m_{i\to a}(t+1) = b_i(t) - 1/2 \left[m_{a\to i}(t) - m_{i\to a}(t) \right]$$

Soft Constraints in D&C

x_1	x_2	x_3	C_a
0	0	0	∞
0	0	1	0
0	1	0	0
0	1	1	∞
$\boxed{1}$	0	0	0
1	0	1	∞
$\boxed{1}$	1	0	∞
1	1	1	0

x_3	x_4	C_c
0	0	0.4
0	1	1.9
0	2	0.2
1	0	4.9
1	1	0.3
1	2	2.4

Connect "Cost Variables" to a total cost constraint

Outline

- Review of factor graphs for optimization and inference, and the min-sum Belief Propagation (BP) algorithm
- Gravel and Elser's "Divide & Concur" algorithm interpreted as a message-passing algorithm
- Decoders for Low-Density Parity Check (LDPC) Codes
 - Divide & Concur Decoder
 - "Difference-Map Belief Propagation" (DMBP) Decoder
- Simulation Results
 - DMBP Decoder significantly improves error-floor performance compared with standard BP decoders, with similar complexity!

Divide & Concur Decoder (Using Cost Variables)

Energy Constraint

Costs / Observed Symbols

Transmitted Codeword Bits

Parity Check

Divide & Concur Decoder (Simplified Version)

(See also Gravel Ph.D. thesis 2009)

Energy Constraint

$$-\sum_{i=1}^{N} x_i L_i \le E_{\max}$$

$$E_{\max} = -(1+\epsilon) \sum_{i} |L_i|$$
, with $0 < \epsilon \ll 1$

Energy constraint never satisfied, but terminate when you find a codeword

Transmitted Codeword Symbols $x_i = \pm 1$

Parity Checks

Difference-Map Belief Propagation

- D&C decoder performs OK, but not really better than sumproduct BP.
- D&C decoder often decodes to incorrect codewords, something BP almost never does.
- But perhaps the "traps" that the difference-map avoids are related to the "trapping sets" that cause poor error-floor performance of BP decoders.
- Can we import the "difference-map" idea into a BP decoder?

Min-Sum BP

$m_{a \to i}(t) = \left(\min_{j \in \mathcal{N}(a) \setminus i} |m_{j \to a}(t)| \right) \prod_{j \in \mathcal{N}(a) \setminus i} \operatorname{sgn}(m_{j \to a}(t)) \qquad \qquad \boldsymbol{m}_{a \to i}(t) = \boldsymbol{m}_{\to a}(t) + 2[P_D^a(\boldsymbol{m}_{\to a}(t)) - \boldsymbol{m}_{\to a}(t)]$

$$b_i(x_i) = \sum_{a \in N(i)} m_{a \to i}(x_i)$$

$$m_{i \to a}(x_i) = b_i(x_i) - m_{a \to i}(x_i)$$

Divide & Concur

$$\mathbf{m}_{a\rightarrow}(t) = \mathbf{m}_{\rightarrow a}(t) + 2[P_D^a(\mathbf{m}_{\rightarrow a}(t)) - \mathbf{m}_{\rightarrow a}(t)]$$

$$b_i(x_i) = \frac{1}{|N(i)|} \sum_{a \in N(i)} m_{a \to i}(x_i)$$

$$m_{i\to a}(t+1) = b_i(t) - 1/2 \left[m_{a\to i}(t) - m_{i\to a}(t) \right]$$

Difference-Map Belief Propagation

$$m_{a \to i}(t) = \left(\min_{j \in \mathcal{N}(a) \setminus i} |m_{j \to a}(t)|\right) \prod_{j \in \mathcal{N}(a) \setminus i} \operatorname{sgn}(m_{j \to a}(t)), \qquad \mathbf{m}_{a \to}(t) = \mathbf{m}_{\to a}(t) + 2[P_D^a(\mathbf{m}_{\to a}(t)) - \mathbf{m}_{\to a}(t)]$$

$$\mathbf{m}_{a\rightarrow}(t) = \mathbf{m}_{\rightarrow a}(t) + 2[P_D^a(\mathbf{m}_{\rightarrow a}(t)) - \mathbf{m}_{\rightarrow a}(t)]$$

$$b_i(x_i) = \sum_{a \in N(i)} m_{a \to i}(x_i)$$

$$b_i(x_i) = Z \sum_{a \in N(i)} m_{a \to i}(x_i)$$

$$b_i(x_i) = \sum_{a \in N(i)} m_{a \to i}(x_i) \qquad b_i(x_i) = Z \sum_{a \in N(i)} m_{a \to i}(x_i) \qquad b_i(x_i) = \frac{1}{|N(i)|} \sum_{a \in N(i)} m_{a \to i}(x_i)$$

$$m_{i \to a}(x_i) = b_i(x_i) - m_{a \to i}(x_i)$$

$$m_{i\to a}(t+1) = b_i(t) - 1/2 \left[m_{a\to i}(t) - m_{i\to a}(t) \right]$$

Comments and Justifications

- Min-sum rule already overshoots in some sense
 - If there are three one's and a zero attached to a check, every bit will flip
- Wasn't clear whether BP's "belief is a sum" or D&C's "belief is an average" rule made more sense, so we compromise.
- Use D&C overshoot-correction rule.
- We also tried a sum-product version of DMBP, but it actually performed worse than the min-sum version!
 - This is surprising, because sum-product BP usually performs better than min-sum BP,
 and min-sum BP would otherwise be preferred because it is simpler to implement.

Outline

- Review of factor graphs for optimization and inference, and the min-sum Belief Propagation (BP) algorithm
- Gravel and Elser's "Divide & Concur" algorithm interpreted as a message-passing algorithm
- Decoders for Low-Density Parity Check (LDPC) Codes
 - Divide & Concur Decoder
 - "Difference-Map Belief Propagation" (DMBP) Decoder
- Simulation Results
 - DMBP Decoder significantly improves error-floor performance compared with standard BP decoders, with similar complexity!

Multi-stage Decoders

Fig. 1. Structure of an E-BP-MILP decoder.

See Y. Wang, J.S. Yedidia, S.C. Draper, ISIT 2009

Length=1057, rate=0.77, random LDPC over BSC

Length=1057, rate=0.77, random LDPC over BSC

Length=1057, rate=0.77, random LDPC over AWGNC

(a) Results when $T_{\text{max}} = 50$ iterations

Length=1057, rate=0.77, random LDPC over AWGNC

(b) Results when $T_{\rm max}=200$ or 500 iterations

Length=2209, rate=0.916, Array LDPC over BSC

Fig. 4. Error performance comparisons for a length-2209, rate-0.916 array LDPC code over the BSC.

Summary

- Gravel and Elser's Divide & Concur algorithm is an interesting competitor to Belief Propagation, that can handle a very wide variety of problems, including problems with continuous variables and with no local evidence. The difference-map dynamics of D&C lets it avoid local "traps."
- Divide & Concur can be usefully re-formulated as a message-passing algorithm.
- Divide & Concur decoders of LDPC codes are not very impressive, but simulations show that importing the difference-map idea into a min-sum BP decoder results in a significantly improved decoder compared to the standard sum-product BP decoder, with similar complexity.

Changes for the better